Kolmogorov complexity and set theoretical representations of integers
نویسندگان
چکیده
We reconsider some classical natural semantics of integers (namely iterators of functions, cardinals of sets, index of equivalence relations) in the perspective of Kolmogorov complexity. To each such semantics one can attach a simple representation of integers that we suitably effectivize in order to develop an associated Kolmogorov theory. Such effectivizations are particular instances of a general notion of “selfenumerated system” that we introduce in this paper. Our main result asserts that, with such effectivizations, Kolmogorov theory allows to quantitatively distinguish the underlying semantics. We characterize the families obtained by such effectivizations and prove that the associated Kolmogorov complexities constitute a hierarchy which coincides with that of Kolmogorov complexities defined via jump oracles and/or infinite computations (cf. [6]). This contrasts with the well-known fact that usual Kolmogorov complexity does not depend (up to a constant) on the chosen arithmetic representation of integers, let it be in any base n ≥ 2 or in unary. Also, in a conceptual point of view, our result can be seen as a mean to measure the degree of abstraction of these diverse semantics.
منابع مشابه
Set theoretical Representations of Integers, I
We reconsider some classical natural semantics of integers (namely iterators of functions, cardinals of sets, index of equivalence relations) in the perspective of Kolmogorov complexity. To each such semantics one can attach a simple representation of integers that we suitably effectivize in order to develop an associated Kolmogorov theory. Such effectivizations are particular instances of a ge...
متن کاملEEH: AGGH-like public key cryptosystem over the eisenstein integers using polynomial representations
GGH class of public-key cryptosystems relies on computational problems based on the closest vector problem (CVP) in lattices for their security. The subject of lattice based cryptography is very active and there have recently been new ideas that revolutionized the field. We present EEH, a GGH-Like public key cryptosystem based on the Eisenstein integers Z [ζ3] where ζ3 is a primitive...
متن کاملChurch, Cardinal and Ordinal Representations of Integers and Kolmogorov complexity
We consider classical representations of integers: Church’s function iterators, cardinal equivalence classes of sets, ordinal equivalence classes of totally ordered sets. Since programs do not work on abstract entities and require formal representations of objects, we effectivize these abstract notions in order to allow them to be computed by programs. To any such effectivized representation is...
متن کامل2 J an 2 00 8 Church , Cardinal and Ordinal Representations of Integers and Kolmogorov complexity
We consider classical representations of integers: Church’s function iterators, cardinal equivalence classes of sets, ordinal equivalence classes of totally ordered sets. Since programs do not work on abstract entities and require formal representations of objects, we effectivize these abstract notions in order to allow them to be computed by programs. To any such effectivized representation is...
متن کاملDerandomization and Distinguishing Complexity
We continue an investigation of resource-bounded Kolmogorov complexity and derandomization techniques begun in [2, 3]. We introduce nondeterministic time-bounded Kolmogorov complexity measures (KNt and KNT) and examine the properties of these measures using constructions of hitting set generators for nondeterministic circuits [22, 26]. We observe that KNt bears many similarities to the nondeter...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Math. Log. Q.
دوره 52 شماره
صفحات -
تاریخ انتشار 2006